

International Journal of Advances in Engineering and Management (IJAEM)

Volume 5, Issue 1 Jan. 2023, pp: 133-139 www.ijaem.net ISSN: 2395-5252

DOI: 10.35629/5252-0501133139 |Impact Factorvalue 6.18| ISO 9001: 2008 Certified Journal Page 133

Virtual Machine Introspection Modeling

For Virtualization-Based Privacy

Preservation against Malware in

Unstructured Network

Oviebor, E. O., Ogheneovo, E. E. & Egbono, F.
Department of Computer Science, University of Port Harcourt, Port Harcourt, Nigeria.

--- ----------

Date of Submission: 01-01-2023 Date of Acceptance: 08-01-2023

--
ABSTRACT

Unstructured network computing gives end users

scalable virtualized on-demand services with more

flexibility and with a less infrastructure investment.

Under the supervision of various network service

providers, these services are offered via the Internet

utilizing well-known networking protocols,

standards and formats. Existing flaws and

weaknesses in unstructured network architecture

and antiquated protocols frequently act as entry

points for intrusion. This study used the Virtual

Machine Introspection approach (VMI) to identify

and stop various intrusions of various malware with

distinguish term-sizes that could compromise the

host machine's resources' availability,

confidentiality and integrity. It examines and

compares the VMI model with the Hypervisor

Introspection technique (HI) for Intrusion

Detection System (IDS) in unstructured network

architecture and performed better than it.

Keywords: Virtual Machine, Malware,

Hypervisor, Term-size.

I. INTRODUCTION
Unstructured network is a model that

enables on-demand network access in order to

share computing resources like network bandwidth,

storages, applications, and many more. It

encourages rapid scalability with minimal service

provider management (Kuyoro et al., 2011). It

could be rapidly provisioned and released

withminimal management effort or service provider

interactions (Mell, and Grance, 2011).The

unstructured network in the form of Cloud provides

services in various forms: Software as a Service-

SaaS (e.g. Google Apps (Google,

http://www.google.com/apps/business).While the

network offers many benefits, many of the major

players may be tempted to stay back until some of

the drawbacks are better recognized (Subashini

andKavitha,2011).. How to close the semantic gap

between the hypervisor and the virtual machine

(Yacine , 2015) is one of the main problems that

the Hypervisor Introspection-based solutions need

to address.

Although an unstructured network like

cloud computing is intended to minimize the

majority of the client's workload by utilizing

virtualization techniques and to give a healthier

utilization of resources, it is rife with security risks

(Keiko et al., 2013). As a result, we must safeguard

data in the midst of unreliable programs (Kevin et

al., 2010).A malicious program may attempt to

determine whether they are being watched and then

modify their behavior accordingly. This frequently

occurs when malware is advanced (Martina et at.,

2011). In order to identify any dangerous program

changes or the execution of any strange or

malicious code, Virtual Machine Introspection

(VMI) examines the programs that are currently

running in a virtual machine (VM) (Hebbal et al.,

2015). Virtual machine monitor (VMM)

technology, which was absent from conventional

IDS methods, is used by VMI model. VMs are

created and run by software known as a hypervisor

or VMM. Application that want to use system call

interface to express its demands or if it wishes to

influence other apps or access any external

resources, programs are contained by system call

interposition-based application sandboxes, which

limit the system calls that can be made by them and

may change the arguments that can be passed to

those calls (Samuel and Sampsa, 2017).

Application-level sandboxes frequently use the

system call interface's gate-keeping function to

keep apps contained (Taesoo and Nickolai, 2013;

Maximilian et al., 2019).

http://www.google.com/apps/business

International Journal of Advances in Engineering and Management (IJAEM)

Volume 5, Issue 1 Jan. 2023, pp: 133-139 www.ijaem.net ISSN: 2395-5252

DOI: 10.35629/5252-0501133139 |Impact Factorvalue 6.18| ISO 9001: 2008 Certified Journal Page 134

There are various ways to implement the

VM introspection technique, which include the use

of guest-OS hooks, VM state access, kernel

debugging, interrupts and hypercall authentication.

These methods help to close the semantic gap

between the low-level data present in a VM and the

high level semantic state of a VM. However, we

will implement Application Programming Interface

(API) call sequences that can easily represent the

activity of malware in its code enabling simple

detection of behavioral change within the network

traffic, file modification, registry value

modification, process creation, and many more.The

existing hypervisor introspection system-conducted

security solutions only introspect specific guest OS

data structures to either protect them against kernel

rootkit attacks or detect already injected malicious

code inside the kernel. Intrusive attacks within the

user-mode processes are very common in

unstructured network platforms (Jonathan et al.,

2018). Only a few of them make an effort to

concentrate on user-mode process protection

(Hofmann et al., 2013; Andrei et al., 2015;

Chonghua et al., 2015;Vogl and Eckert, 2012).

Despite this, there are some intrusions that

solely target user processes and cannot be stopped

by just protecting the OS kernel. These malicious

codes try to steal and manipulate user secret data,

such as passwords, personally identifiable

information (PII), emails, contacts, etc., attackers

use suspicious application to exploits and gain

access on user processes and manipulate important

user data (e.g., the mail client, the Internet browser)

do not require controlling the OS kernel. The

virtual machine introspection (VMI)

implementationtends to protect both the kernel and

user memory sectors, our method seeks to provide

defense against these kinds of privacy intrusion.We

compared the Hypervisor Introspection (HI)

technique that deploy the hardware assistance

approach to perform introspection of hypervisor

and the host OS kernel states to detect various

attacks such as hardware attacks, rootkit attacks,

and side channel attacks using various term-size

sample of malware and benign file. We found out

that, our model, the VMI perform better than the HI

architecture.

II. VIRTUAL MACHINE

INTROSPECTION
The virtual CPU, memory, and disk

contents are among the internal states and events

that are observed and analyzed by the VMI tools.

Our trampoline, acting in the capacity of an

analyst, is granted access to that level of privilege

by the hypervisor, which is in charge of managing

interactions between hardware and the operating

system (OS).It makes it possible for the hook to

observe these actions from outside the virtual

machines. Any attempt to modify a virtual machine

after the hypervisor has established it will result in

an alert being sent to the system administrator or

tenant administrator at the beginning of

execution.Based on an analysis of their graphs' data

flow and information flow, our VMI approach

separates malware from legitimate programs. The

system call interface has been used for monitoring

and profiling application behavior in addition to

program containment (Aceto, et al., 2013). The

algorithm below separates safe code from

questionable user programs. Nodes of the graph are

categorized as legitimate or anomalous at the end

of the algorithm's test.

Algorithm 1: For Detection of Malicious Node in

a Graph

Step 1: INPUT: Graph objects with code snippet

Step 2: OUTPUT: Decision: Malicious or

Legitimate reset Flag;

Step 3: If Process creates or modifies Files OR

directories OR registry entries Then

Step 4: Set Flag

Step 5: ElseIf Process generates another thread

process OR initiates another process Then

Step 6: Set Flag

Step 7: Else If Process loads suspicious file OR

reads data from suspicious file Then

Step 8: Set Flag

Step 9: End If

Step 10: If Flag is Set Then

Step 11: Update node with current Timestamp and

label malicious;

Step 12: EndIf

III. MALICIOUS OBJECTS

LABELING
Any object's directed graph may have

some trustworthy nodes as well as some harmful

nodes. Each start point object has a data flow

connection or information flow link that connects it

to its descendants. Algorithm 1. This algorithm is

used to identify harmful object nodes that are

actually present in a graph.

Algorithm 2: For Graph infection Detection

Step 1: For A given graph G (V, E) Do

Step 2: For Every node V Do

Step 3: If Node V is malicious Then

Step 4: Label all its descendant nodes as malicious

Step 5: Label all its predecessor nodes as malicious

https://www.researchgate.net/scientific-contributions/Jonathan-Grimm-2144145985
https://www.researchgate.net/scientific-contributions/Andrei-Lutas-2059943140

International Journal of Advances in Engineering and Management (IJAEM)

Volume 5, Issue 1 Jan. 2023, pp: 133-139 www.ijaem.net ISSN: 2395-5252

DOI: 10.35629/5252-0501133139 |Impact Factorvalue 6.18| ISO 9001: 2008 Certified Journal Page 135

Step 6: EndIf

Step 7: EndFor

Step 8: End For

Due to the direction of malicious data and

information flow, algorithm 2 identifies all nodes

descending from node V as malicious. This is an

external file or object, yet all antecedents of node X

are considered malevolent because node X is

accessed by its root. The process that is accessing

the foreign object must be the start of malware.

3.1 Malware Detection

The files that can potentially be malware

samples are chosen by algorithms 1 and 2. For

future consideration, the graphs flagged as harmful

by Algorithm 2 are taken into account. With the

use of such a graph, our VMI technique has even

the most basic understanding of the information

flow and data flow of that object, as well as its

communication with the other system entities.

Since the entire graph is taken into account as a

single potential malware code unit. Our system

determines if a particular code is malware or a

legitimate program based on its examination. By

examining or introspecting, the sequence of API

calls, checking for signature matches, and

identifying dangerous malware attributes, code can

be proven to be malicious.

Algorithm 3: For Malware symptoms detection

Step 1: INPUT: Code generated from Entire Graph

Step 2: Reset flag

Step 3: Detect all API calls, jump instructions and

remote references

Step 4: If Found System Hook or ASEPs Then

Step 5: Set flag

Step 6: Else If Found Changes in File Properties

Then

Step 7: Set flag

Step 8: End If

Step 9: If flag is Set Then

Step 10: Malicious code present

Step 11: End If

Algorithm 3 looks for fundamental

characteristics that all malware possesses. The first

check looks for a code that allows malware to set

the Auto Start Extensible Point (ASEP). Every

piece of malware configures a technique to enable

activation upon system reboot. One of the

techniques listed below is used to enable such

mechanisms:

(a) Global Windows hooks setting.

(b) Modifying to multi extension executables.

(b) Modify registry entry attributes.

The code and information flow of a

certain graph are examined using Algorithm 3 for

these signs. If any of the specified collection of

codes are found, an alert is generated. The later

loop of the Algorithm 3 checks for modifications to

the file's characteristics. The following are the

implemented checks:

(a) File extension change

(b) Modifying file access control attributes

Algorithms 1, 2 and 3 looked at each

potential dangerous program's flow individually.

The aforementioned actions fall under the category

of harmful activity. These circumstances enable the

fundamental tasks that a malware application must

perform in order to continue existing on the host

computer. For instance, malware must build ASEP

in order to activate itself upon every boot. One of

the aforementioned methods can be used to do this.

3.2 Methodology

The malware analysis components

operating on the introspected (host) PC can be

detected by sophisticated malware programs

without leaving any traces in the system, they

attempt to disable or compromise the security tool.

In order to prevent being attacked by sophisticated

malware codes, we therefore opted to essentially

monitor the Guest VMs by installing the security

monitor at type two hypervisor. The model is

installed at the security VM (Dom0) and is

particularly created to offer VM introspection from

outside the tenant VM. The technique makes use of

the hypervisor's capabilities to introspect libraries,

which accesses the VM memory regions through

the guest symbol table.The method offers a high-

level view of the memory of the Guest VM, which

is examined by a security analyzer operating in the

security VM (Dom0). The information is

communicated to other security modules operating

in the security VM via the security module

(trampoline code) in the monitor VM. Security

analyzer sends a warning to the cloud administrator

if any of the VM memory areas are discovered to

be suspicious. The model is designed in a way that

service providers can track the behavior of the

VMs from the VMM. We set up the IDS in the host

VM's hypervisor. The method can identify insider

VM attacks, VM-VM attacks, and in particular

VM-VMM attacks. To further secure our model,

we employ a number of tools, which includes, the

Secure Server Commands, SECURE Commands,

and Command Confirmation.

International Journal of Advances in Engineering and Management (IJAEM)

Volume 5, Issue 1 Jan. 2023, pp: 133-139 www.ijaem.net ISSN: 2395-5252

DOI: 10.35629/5252-0501133139 |Impact Factorvalue 6.18| ISO 9001: 2008 Certified Journal Page 136

Secure Server Commands
The user's direct connection to the kernel

is through the Secure Server. By hitting the Secure

Attention Key, a user calls up a trusted route to the

Secure Server. This key is always active and cannot

be read by unauthorized code. The Secure

Attention Key that we have selected is the BREAK

key. Using commands like CONNECT,

DISCONNECT, RESUME, and SHOW

SESSIONS, the Secure Server manages terminal

connections to virtual machines in the same manner

that a terminal server manages terminal

connections to physical machines.Users can simply

move between sessions they have created with

multiple virtual machines at various access classes.

The Secure Server command interface is entirely

composed of trusted code and provides only the

barest of command-line editing features.

SECURE Commands

The SECURE commands are the

management tools for the system. The VMS

operating system comes pre-installed with the full

collection of SECUREcommands and tools.

Features like command-line recall and command

procedures are available to the user. The system

has two different types of secure commands: VM

secure commands and User secure commands. The

operating-system command level of the VM is used

to issue both varieties of SECURE commands. The

issuing VM is used to execute the VM SECURE

instructions. The Secure Server receives the User

SECURE commands and executes them. The type

of subject a user or a virtual machine holding the

access class and privileges required to issue the

command distinguishes the commands.

Command Confirmation
While both the User and VM SECURE

commands are administrative commands, only the

User SECURE commands must be trusted. For

such security-relevant commands, our system

requires and assurances that:

(i) The command was issued by a user and not by a

virus (Trojan horse) in a VM.

(ii)The command received by the Secure Server is

exactly the same command typed by the user and

not a command that was covertly modified by a

Trojan horse.

(iii) The user who issued the command can be

identified in the audit log.

Our design for the User SECURE commands

provides both trust and individuality accountability

even for commands issued from an untrusted

environment.

Hypervisor Introspection (HI)
Hypervisor Introspection (HI) examines

hypervisor-related data structures, memory regions,

hypercalls, control flow data, non-control flow

data, etc. It also works to stop and detect attacks on

the hypervisor, which essentially take a low level

view of the state of the virtual machine and cause a

semantic gap for this technique. However, the VMI

we provide aims to address this semantic difficulty

because the method can access the high level view

of the VM state.

IV. RESULTS AND DISCUSSION
Datasets

In this experiment, we used system call

datasets from eicar.com database. The datasets

consist of program execution traces observed both

in a synthetic environment and on real world

machines with actual users virtual machine and

under normal operating conditions. Different

datasets were made used of in this experiment. The

first ones are the collection of execution traces of

malware samples randomly extracted from

eicar.com. They are called malware and it includes

a mixture of some categories such as worms,

dropper, Trojan horses, etc. The second dataset is

labeled as benign and it contains execution traces

collected from ten different databases in eicar.com

and it contains traces of certain benign applications

executed under a real virtual machine. These

datasets are originally in the form of 1-gram

format. Each trace in the dataset is an execution

trace of a process, which consist of set of system

calls (Windows APIs) number. The details of

classes and quantity of each malware dataset are

shown in Table 1.

Table 1: Experimental Dataset

S/N

Malware Class Quantity Percentage (%) Maximum Size (KB)

1 Benign 17,214 21.91 122,154

2 Trojan 16,146 20.55 88,547

3 Virus 19,821 25.23 99,784

4 Worm 13,541 17.23 76,000

International Journal of Advances in Engineering and Management (IJAEM)

Volume 5, Issue 1 Jan. 2023, pp: 133-139 www.ijaem.net ISSN: 2395-5252

DOI: 10.35629/5252-0501133139 |Impact Factorvalue 6.18| ISO 9001: 2008 Certified Journal Page 137

5 Rootkit 357 0.45 789

6 Backdoor 8,541 10.87 68,054

7 Flooder 1,424 1.81 29,785

8 Spyware 1,524 1.94 39,431

Total 78,568 99.99 524,544

 Table 2: Confusion Matrix

Actual Class

Malware Benign Total

Detected/Predicted

Class

Malware TP FP TP + FP

Benign FN TN FN + TN

Total TP + FN FP + TN

Table 3 contents the Confusion Matrix

value for Term-Size 1 dataset sample for our

experiment. These values are generated after the

VMI and other HI system were subjected to dataset

sample of 78,568 both malware binary and benign

binary as shown in Table 1. The number of

malware binary is 61,354 and 17,214 benign binary

which gave us the total number of dataset

mentioned earlier for this experiment. In table 3,

we will observe that when the designed VMI and

the HI system were subjected to the total number of

dataset for possible content poisoning and other

malware attack against a vulnerable client machine

within an virtualized unstructured

networkenvironment, the VMI was able to detect

and prevent a total of 58,200 TP virus as against;

48,113 TP for HI, Other confusion matrix values

for the VMI and the HI are shown in Table 3.

Table 3: Confusion Matrix values for Term-Size 1

In Table 4 with term-size 2, we could

observe that the VMI shows a better performance

of lesser FP detection and prevention of 2,425

malware files to that of the HI with the total

number of detected and prevented malware binary

as 4,700. For the benign codes the VMI detected

and prevented a total of 2,425TN files when

compared with the HI with total number of benign

code detected and prevented to be 67 TN. When

both systems were subjected with a more advanced

malware and benign code with term size 2 as

shown in Table 4, it indicate that the VMIhave a

better perform as the term-size of the bit sequence

of the malware and benign increases. Other

appreciable feat of the VMI can be seen in Table 4.

Existing System/Proposed System

For Term-Size 1

HI VMI

Total number of sample tested 78,568 78,568

TP 48,113 58,200

FP 3,923 946

TN 8 4,513

FN 0 0

International Journal of Advances in Engineering and Management (IJAEM)

Volume 5, Issue 1 Jan. 2023, pp: 133-139 www.ijaem.net ISSN: 2395-5252

DOI: 10.35629/5252-0501133139 |Impact Factorvalue 6.18| ISO 9001: 2008 Certified Journal Page 138

Table 4: Confusion Matrix values for Term-Size 2

From the results achieved in the VMI in comparison to the HI system, we couldobserved the following in terms

of performance metrics in table 5.

Table 5:

Algorithm FP Rate Accuracy Term size

HI

0.998 0.785 1

0.986 0.839 2

VMI

0.452 0.958 1

0.452 0.958 2

FP Rate: The specificity of theVMIsystem to that

of theHImodel as regards the term-sizes that ranges

from 1, to 2.The FP Rate values for HI is higher

than that of the VMI model valuesas recorded in

table 5.

Accuracy: For accuracy, the VMI model has an

outstanding accuracyfor detection and preventionof

poisonous code when compared to the HIsystem

with both term sizes of 1 and 2 as shown in table 5.

To evaluate the experiment and to examine the

effectiveness of the proposed system to other

existing system, we used the common evaluation

metric that is widely used in information retrieval

area and they are as follows:

True Positive (TP): Number of malware detected

as malware

False Positive (FP): Number of malware detected

as benign

True Negative (TN): Number of benign detected

as benign

False Negative (FN): Number of benign detected

as malware

(a) FP Rate: It is a measure of how many benign

samples are labeled as malware by classifier.

𝐹𝑃𝑅𝑎𝑡𝑒=
FP

FP +TN
(1)

(b) Accuracy: Accuracy is the proportion of true

results (number of malware and benign detected

correctly) in the total number of samples.

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦=
 TP +TN

TP + FP +TN +FN
 * 100%

(2)

V. CONCLUSIONS
In the course of this study, we found out

that the HI find it difficult to track down attackers

with high level view during execution, it only

depends on the low level view of the suspicious

code to resolve poisonous program in a network.

But, in VMI, we designed an appropriate modelthat

is proactiveto limit malicious activities in the

network, while malicious nodes are identified

proactively. Hypervisor Introspection (HI) based

security approach mainly depends on the hardware

assistance to perform introspection of

Existing

System/Proposed System

For Term-Size 1

HI VMI

Total number of sample

tested

78,568 78,568

TP 48,113 58,200

FP 4,700 2,425

TN 67 2,952

FN 2,800 234

International Journal of Advances in Engineering and Management (IJAEM)

Volume 5, Issue 1 Jan. 2023, pp: 133-139 www.ijaem.net ISSN: 2395-5252

DOI: 10.35629/5252-0501133139 |Impact Factorvalue 6.18| ISO 9001: 2008 Certified Journal Page 139

hypervisor/host OS kernel states and detect various

attacks such as hardware attacks, rootkit attacks,

and side channel attacks. The designed VMI can

detect and prevent malicious programs both in the

user space as well as in the kernel mode in real

time.

REFERENCES
[1]. Aceto, G., Botta, A., de Donato, W. and

Pescapè, A. (2013). Cloud monitoring: a

survey. Comput. Netw. 57(9), 2093–2115.

[2]. Andrei, L., Adrian C., Sandor, L. andDan

H. L. (2015). Hypervisor-based protection

of user-mode processes in

Windows.Journal of Computer Virology

and Hacking Techniques.

[3]. Chonghua, W., Xiaochun, Y., Zhiyu,

H., Lei, C., Yandong, H. and Qingxin Z.

(2015). Exploring Efficient and Robust

Virtual Machine Introspection

Techniques. International Conference on

Algorithms and Architectures for Parallel

Processing. 429–448.

[4]. Hebbal, Y., S.LaniepceandJ.-M., Menaud

(2015). Virtual machine introspection:

Techniques and applications. In: 10th

International Conference on Availability,

Reliability and Security (ARES). IEEE,

676-685.

[5]. Hofmann, O.S., Kim, S., Dunn, A.M.,

Lee, M. Z.,Witchel, E. (2013). Ink-Tag:

secure applications on an untrusted

operating system. SIGPLANNot.48(4),

265–278

[6]. Maximilian, B., Jakob, R., Christian, B.,

Tobias, M. and Hannes, F.(2019). State of

the Sandbox: Investigating macOS

Application Security.Application Security.

In 18th Workshop on Privacy in the

Electronic Society (WPES ’19), London,

UK. ACM, New York, NY, USA, 12.

[7]. Jonathan,G.,Irfan, A., Vassil,

R.andManish, B. (2018). Automatic

Mitigation of Kernel Rootkits in Cloud

Environments. In book: Information

Security Applications. 137-149.

[8]. Google apps. [Online]. Available:

http://www.google.com/apps/business.

[9]. Kuyoro, S. O., F.,Ibikunle and O.,

Awodele (2011).Cloud Computing

Security Issues and Challenges

International Journal of Computer

Networks (IJCN). 3(5), 247-255.

[10]. Martina, L., Clemens, K. and Paolo, M. C.

(2011). Detecting environment-sensitive

malware. In International Workshop on

Recent Advances in Intrusion Detection.

Springer, 338–357.

[11]. Mell, P. andGrance, T. (2011). The NIST

Definition of Cloud Computing (Draft).

NIST [Online].

Available:http://csrc.nist.gov/publications/

drafts/800-145/Draft-SP-800-145_cloud-

definition.

[12]. Yacine, H., Sylvie, L. andJean-Marc, M.

(2015). Virtual Machine Introspection:

Techniques and Applications. 10th

International Conference on Availability,

Reliability and Security (ARES).

[13]. Samuel, L. and Sampsa, R. (2017). A

Survey on Application

SandboxingTechniques (The ACM

International Conference Proceedings

Series). 8.

[14]. Keiko, H., David G. R., Eduardo

Fernández-M. and Eduardo B. F.(2013).

An analysis of security issues for cloud

computing. Journal of Internet Services

and Application. 5.

[15]. Taesoo Kim and NickolaiZeldovich.

(2013). Practical and Effective

Sandboxing forNon root Users.. In

USENIX Annual Technical Conference.

139–144.

[16]. Subashini, S. andKavitha, V. (2011). A

survey on security issues in service

delivery models of cloud computing.

Journal of Network and Computer

Applications 34, 1–11

[17]. Vogl, S., and Eckert, C. (2012). Using

hardware performance events for

instruction-level monitoring on the x86

architecture. In: Proceedings of the 2012

European Workshop on System

Security(EuroSec’12).

[18]. Kevin, H., K. Murat, K., Latifur and T.

Bhavani (2010). Security Issues for cloud

computing, International Journal of

Information Security and Privacy, 4(2).

39-51.

https://www.researchgate.net/scientific-contributions/Andrei-Lutas-2059943140
https://www.researchgate.net/profile/Adrian-Colesa
https://www.researchgate.net/profile/Adrian-Colesa
https://www.researchgate.net/profile/Dan-Lutas
https://www.researchgate.net/profile/Dan-Lutas
https://www.researchgate.net/journal/Journal-of-Computer-Virology-and-Hacking-Techniques-2263-8733
https://www.researchgate.net/journal/Journal-of-Computer-Virology-and-Hacking-Techniques-2263-8733
https://link.springer.com/conference/ica3pp%20ica3pp
https://link.springer.com/conference/ica3pp%20ica3pp
https://link.springer.com/conference/ica3pp%20ica3pp
https://link.springer.com/conference/ica3pp%20ica3pp
https://www.researchgate.net/scientific-contributions/Jonathan-Grimm-2144145985
https://www.researchgate.net/profile/Irfan-Ahmed-45
https://www.researchgate.net/profile/Irfan-Ahmed-45
https://www.researchgate.net/profile/Manish-Bhatt-5
http://www.google.com/apps/business
https://www.researchgate.net/profile/Sylvie-Laniepce
https://www.researchgate.net/scientific-contributions/Jean-Marc-Menaud-46325317
https://jisajournal.springeropen.com/articles/10.1186/1869-0238-4-5#auth-Keiko-Hashizume
https://jisajournal.springeropen.com/articles/10.1186/1869-0238-4-5#auth-David_G-Rosado
https://jisajournal.springeropen.com/articles/10.1186/1869-0238-4-5#auth-Eduardo-Fern_ndez_Medina
https://jisajournal.springeropen.com/articles/10.1186/1869-0238-4-5#auth-Eduardo-Fern_ndez_Medina
https://jisajournal.springeropen.com/articles/10.1186/1869-0238-4-5#auth-Eduardo-Fern_ndez_Medina
https://jisajournal.springeropen.com/articles/10.1186/1869-0238-4-5#auth-Eduardo_B-Fernandez

